Automatic priming, schema induction and spread of activation in l2 lexical access: Do differences in vocabulary size and depth of priming remain invariant?

Authors

  • Stephen Ntim Catholic University of Ghana, Ghana

DOI:

https://doi.org/10.38140/ijspsy.v2i2.716

Keywords:

automatic priming, schema induction, spread of activation, vocabulary size, comprehension

Abstract

This study investigated automatic priming, schema induction, the spread of activation, and L2 lexical access through vocabulary size and depth. Employing the theoretical framework of the distributed memory representation, the underlying assumption was that conceptual knowledge was identified through connection weights linking universal processing units rather than local ones. Using an experimental pre-test-post-test design with purposive sampling of estimated one hundred and fifty (150) students from three (3) Senior High Schools in Ghana, the critical findings in this study were that cognitive differences in automatic priming, schema induction and spread of activation predicted enhanced reading comprehension in L2, especially how fast one could infer from text since these cognitive processes helped to reduce cognitive load involved in reading. The second finding was that ability to use automatic priming, schema induction and spread of activation reduced mental load to facilitate comprehension by the size and level of vocabulary readers possessed in long-term memory. The third finding was that priming, the spread of activation, and schema induction increased with increasing attentional control. Readers with high attentional control were more likely to be involved in a proactive expectancy strategic use of priming, the spread of activation, and schema induction to generate possible targets. These cognitive differences remain invariant in readers unless classroom practices are designed to help less enhanced readers strategies to promote schema induction, priming, and spread of activation.

References

Acero, A. R., Cano-Prous, A., Castellanos, G., Martín?Lanas, R., & Canga?Armayor, A. (2017). Family identity and severe mental illness: A thematic synthesis of qualitative studies. European Journal of Social Psychology, 47(5), 611-627. https://doi.org/10.1002/ejsp.2240.

Allen, P. A., Lien, M. C., Murphy, M. D., Sanders, R. E., Judge, K. S., & McCann, S. R., (2002). Age differences in overlapping-task performance: evidence for efficient parallel processing in older adults. Psychol. Aging, 17(3), 505–519. https://doi.org/10.1037/0882-7974.17.3.505.

Anderson, J. R. & Milson, R. (1989). Human memory: An adaptive perspective. Psychological Review, 96(4), 703–719. https://doi.org/10.1037/0033-295X.96.4.703.

Anderson, J. R. (1983). A spreading activation theory of memory. Journal of verbal learning and verbal behavior, 22(3), 261-295. https://doi.org/10.1016/S0022-5371(83)90201-3.

Andrews, S. (2012). Individual differences in skilled visual word recognition and reading: The role of lexical quality. In J. S. Adelman (Ed.), Visual word recognition volume 2: Meaning and context, individuals, and development (pp. 151–172). Hove: Psychology Press.

Atkinson, R. C., Shiffrin, R. M. (1968). Human memory: a proposed system and its control processes. In K. W. Spence & J. T. Spence (Eds.). The Psychology of Learning and Motivation: Advances in Research and Theory (pp. 89–195). New York: Academic.

Balota, D. A., & Lorch, R. F. (1986). Depth of automatic spreading activation: Mediated priming effects in pronunciation but not in lexical decision. Journal of Experimental Psychology: Learning, memory, and cognition, 12(3), 336-345. https://doi.org/10.1037/0278-7393.12.3.336.

Balota, D. A., Black, S. R., & Cheney, M. (1992). Automatic and attentional priming in young and older adults: reevaluation of the two-process model. Journal of Experimental Psychology: Human Perception and Performance, 18(2), 485–502. https://doi.org/10.1037/0096-1523.18.2.485.

Balota, D. A., Yap, M. J., Cortese, M. J., & Watson, J. M. (2008). Beyond mean response latency: Response time distributional analyses of semantic priming. Journal of Memory and Language, 59(4), 495–523. https://doi.org/10.1016/j.jml.2007.10.004.

Becker, C. A. (1980). Semantic context effects in visual word recognition: An analysis of semantic strategies. Memory & Cognition, 8, 493–512. https://doi.org/10.3758/BF0321376.

Bodner, G. E., & Masson, M. E. J. (2003). Beyond spreading activation: An influence of relatedness proportion on masked semantic priming. Psychonomic Bulletin and Review, 10(3), 645-652. https://doi.org/10.3758/BF03196527.

Cleland, A. A., Gaskell, M. G., Quinlan, P. T., & Tamminen, J., (2006). Frequency effects in spoken and visual word recognition: Evidence from dual-task methodologies. Journal of Experimental Psychology: Human Perception and Performance, 32(1), 104–119. https://doi.org/10.1037/0096-1523.32.1.104.

Collins, A. M., & Loftus, E. F. (1975). A spreading-activation theory of semantic processing. Psychological Review, 82(6), 407–428. https://doi.org/10.1037/0033-295X.82.6.407.

Coltheart, M., Rastle, K., Perry, C., Langdon, R., & Ziegler, J. (2001). DRC: a dual route cascaded model of visual word recognition and reading aloud. Psychol. Rev, 108(1), 204–256. https://doi.org/10.1037/0033-295X.108.1.204.

Dagenbach, D., Horst, S., & Carr, T. H. (1990). Adding new information to semantic memory: How much learning is enough to produce automatic priming?. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16(4), 581–591. https://doi.org/10.1037/0278-7393.16.4.581.

De Debat, E. V. (2006). Applying current approaches to the teaching of reading. English teaching forum, 44(1), 8-15. Retrieved from https://files.eric.ed.gov/fulltext/EJ1107882.pdf.

Dosher, B. A., & Rosedale, G. (1989). Integrated retrieval cues as a mechanism for priming in retrieval from memory. Journal of Experimental Psychology: General, 118(2), 191–211. https://doi.org/10.1037/0096-3445.118.2.191.

Ellis, R. (2006). Current Issues in the Teaching of Grammar: An SLA Perspective. TESOL Quarterly, 40(1), 83-107. https://doi.org/10.2307/40264512.

Forster, K. I. (1976). Accessing the mental lexicon. In: Wales, R.J., Walker, E.W. (Eds.), New Approaches to Language Mechanisms (pp. 257–287). Amsterdam, North-Holland.

Gagné, E. D. (1985). The cognitive psychology of school learning. Boston, MA: Little, Brown and Company.

Gagne, R. (1985). The conditions of learning and theory of instruction Robert Gagné. New York, NY: Holt, Rinehart ja Winston.

Gough, P. B., & Tunmer, W. E. (1986). Decoding, reading, and reading disability. Remedial and special education, 7(1), 6-10. https://doi.org/10.1177/074193258600700104.

Halford G. S., & Busby, J. (2007) Acquisition of structured knowledge without instruction: the relational schema induction paradigm. Journal of Experimental Psychology: Learning, Memory and Cognition. 33(3), 586–603. https://doi.org/10.1037/0278-7393.33.3.586.

Halford, G. S., Bain, J. D., Maybery, M. T., & Andrews, G. (1998) Induction of relational schemas: Common processes in reasoning and complex learning. Cognitive Psychology, 35(3), 201–245. https://doi.org/10.1006/cogp.1998.0679.

Hebb, D. O. (1949). Temperament in chimpanzees: I. Method of analysis. Journal of Comparative and Physiological Psychology, 42(3), 192–206. https://doi.org/10.1037/h0056842.

Hinton, G. E., & Shallice, T. (1991). Lesioning an attractor network: Investigations of acquired dyslexia. Psychological Review, 98(1), 74–95. https://doi.org/10.1037/0033-295X.98.1.74.

Hoover, W. A., Gough, P. B. (1990). The simple view of reading. Reading Writing, 2, 127–160. https://doi.org/10.1007/BF00401799.

Hutchison, K. A. (2007). Attentional control and the relatedness proportion effect in semantic priming. Journal of Experimental Psychology: Learning, Memory, and Cognition, 33(4), 645–662. http://dx.doi.org/10.1037/0278-7393.33.4.645.

Hutchison, K. A., Balota, D. A., Neely, J. H., Cortese, M. J., Cohen-Shikora, E. R., Tse, C-S., … & Buchanan, E. (2013). The Semantic Priming Project. Behavior Research Methods, 45, 1099–1114. https://doi.org/10.3758/s13428-012-0304-z.

Hutchison, K. A., Heap, S. J., Neely, J. H., & Thomas, M. A. (2014, February 17). Attentional Control and Asymmetric Associative Priming. Journal of Experimental Psychology: Learning, Memory, and Cognition. http://doi.org/10.1037/a0035781.

Kahle, W. (1979). Band 3: nervensysteme und Sinnesorgane, in Taschenatlas deanatomie. Stuttgart. In W. Kahle, H. Leonhardt & W. Platzer (Eds). New York, NY, United States: Thieme Verlag.

Keele, S. W. (1973). Attention and Human Performance. Goodyear, Pacific Palisades, CA.

Kinoshita, S., Forster, K. I., & Mozer, M. C. (2008). Unconscious cognition isn't that smart: Modulation of masked repetition priming effect in the word naming task. Cognition, 107(2), 623-649. https://doi.org/10.1016/j.cognition.2007.11.011.

Kinoshita, S., Mozer, M. C., & Forster, K. I. (2011). Dynamic adaptation to history of trial difficulty explains the effect of congruency proportion on masked priming. Journal of Experimental Psychology: General, 140(4), 622-636. https://doi.org/10.1037/a0024230.

Kintsch, W. (2009). Learning and constructivism. In S. Tobias & T. M. Duffy (Eds.), Constructivist Instruction: Success or failure? New York, NY: Routledge.

Koriat, A., & Melkman, R. (1981). Individual differences in memory organization as related to word-association, object-sorting, and word-matching styles. British Journal of Psychology, 72(1), 1–18. https://doi.org/10.1111/j.2044-8295.1981.tb02157.x.

Korteling, J. E., van de Boer-Visschedijk G. C., Blankendaal, R. A., Boonekamp, R. C., & Eikelboom, A. R. (2021) Human- versus Artificial Intelligence. Frontiers in Artificial Intelligence, 4, 622-364. https://doi.org/10.3389/frai.2021.622364.

Lemhöfer, K., & Broersma, M. (2012). Introducing LexTALE: A quick and valid lexical test for advanced learners of English. Behavior research methods, 44, 325-343. https://doi.org/10.3758/s13428-011-0146-0.

Lien, M. C., Allen, P. A., Ruthruff, E., Grabbe, J., McCann, R.S., Remington, R. W., (2006). Visual word recognition without central attention: evidence for greater automaticity with advancing age. Psychology and Aging, 21(3), 431–447. https://doi.org/10.1037/0882-7974.21.3.431.

Lowe, C., & Rabbitt, P. (1998). Test/re-test reliability of the CANTAB and ISPOCD neuropsychological batteries: Theoretical and practical issues. Neuropsychologia, 36(9), 915–923. https://doi.org/10.1016/S0028-3932(98)00036-0.

Lupker, S. J. (2008). Visual word recognition: Theories and findings. In M. J. Snowling, C. Hulme (Eds.), The Science of Reading: A Handbook (pp. 39–60). Oxford: Blackwell Publishing https://doi.org/10.1002/9780470757642.ch3.

Masson, M. E. J. (1995). A distributed memory model of semantic priming. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21(1), 3–23. https://doi.org/10.1037/0278-7393.21.1.3.

McCann, R. S., Remington, R. W., & Van Selst, M. (2000). A dual-task investigation of automaticity in visual word processing. Journal of Experimental Psychology: Human Perception and Performance, 26(4), 1352–1370. https://doi.org/10.1037/0096-1523.26.4.1352.

McClelland, D. (1982). Understanding psychological man: A state of the science report. Psychology. Today, 16(5), 40–59.

McClelland, J. L., & Rumelhart, D. E. (1981). An interactive activation model of context effects in letter perception: I. An account of basic findings. Psychological Review, 88(5), 375-407. https://doi.org/10.1037/0033-295X.88.5.375.

McKoon, G., & Ratcliff, R. (1992). Spreading activation versus compound cue accounts of priming: Mediated priming revisited. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18(6), 1155–1172. https://doi.org/10.1037/0278-7393.18.6.1155.

McNamara, T. P. (1992a). Priming and constraints it places on theories of memory and retrieval. Psychological Review, 99(4), 650–662. https://doi.org/10.1037/0033-295X.99.4.650.

McNamara, T. P. (1992b). Theories of priming: I. Associative distance and lag. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18(6), 1173-1190. https://doi.org/10.1037/0278-7393.18.6.1173.

McNamara, T. P. (2005). Semantic priming: Perspectives from memory and word recognition. Hove, UK: Psychology Press.

Meyer, D. E., & Schvaneveldt, R. W. (1971). Facilitation in recognizing pairs of words: Evidence of a dependence between retrieval operations. Journal of Experimental Psychology, 90(2), 227–234. https://doi.org/10.1037/h0031564.

Milin, P., Feldman, L. B., Ramscar, M., Hendrix, P., & Baayen, H. (2017). Discrimination in lexical decision. PLoS ONE, 12(2), e0171935. https://doi.org/10.1371/journal.pone.0171935.

Miller, G. A. (1994). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 3(2), 81–97. https://doi.org/10.1037/h0043158.

Morton, J., (1969). Interaction of information in word processing. Psychological Review, 76(2), 165–178. https://doi.org/10.1037/h0027366.

Mullis, I. V., Martin, M. O., Foy, P., & Arora, A. (2012). Trends in international mathematics and science study (TIMSS) 2011 international results in mathematics. TIMSS & PERLY, International study Center, Lynch School of Education: Boston College.

Neely, J. H. (1991). Semantic priming effects in visual word recognition: A selective review of current findings and theories. In D. Besner & G. Humphreys (Eds.), Basic processes in reading: Visual word recognition (pp. 236-264). Hillsdale, NJ: Erlbaum.

Neely, J. H., Keefe, D. E., & Ross, K. L. (1989). Semantic priming in the lexical decision task: Roles of prospective prime-generated expectancies and retrospective semantic matching. Journal of Experimental Psychology: Learning, Memory, and Cognition, 15(6), 1003–1019. https://doi.org/10.1037/0278-7393.15.6.1003.

Ntim, S. (2015). Comprehension skills differences between proficient and less proficient readers in word-to-text integration processes: Implications for interventions for students with reading problem. International Journal of Learning, Teaching & Educational Research, 13(13), 41-61. Retrieved from https://ijlter.myres.net/index.php/ijlter/article/view/1015.

Ntim, S. (2017). Does text familiarity predict schema automation to reduce working memory capacity constraints for enhanced reading comprehension? A study from Ghana. International Journal of Research Studies in Psychology, 6(2), 103-116. https://doi.org/10.5861/ijrsp.2017.1892.

Parasuraman, R. (2003) Neuroergonomics: Research and practice, Theoretical Issues in Ergonomics Science, 4(1-2), 5–20. https://doi.org/10.1080/14639220210199753.

Pashler, H., (1984). Processing stages in overlapping tasks: evidence for a central bottleneck. Journal of Experimental Psychology: Human Perception and Performance, 10(3), 358–377. https://doi.org/10.1037/0096-1523.10.3.358.

Pashler, H., Johnston, J.C., (1989). Chronometric evidence for central postponement in temporally overlapping tasks. The Quarterly Journal of Experimental Psychology, 41(1), 19–45. https://doi.org/10.1080/14640748908402351.

Pexman, P. M. (2012). Meaning-based influences on visual word recognition. In J. S. Adelman (Ed.), Visual Word Recognition, Meaning and Context, Individuals and Development (Vol. 2, pp. 24-43). London: Psychology Press. https://doi.org/10.4324/9780203106976.

Pexman, P. M., Hargreaves, I. S., Siakaluk, P. D., Bodner, G. E., & Pope, J. (2008). There are many ways to be rich: Effects of three measures of semantic richness on 96 visual word recognition. Psychonomic Bulletin and Review, 15, 161–167. https://doi.org/10.3758/PBR.15.1.161.

Pexman, P. M., Lupker, S. J., & Hino, Y. (2002). The impact of feedback semantics in visual word recognition: Number-of-features effects in lexical decision and naming tasks. Psychonomic Bulletin and Review, 9, 542-549. https://doi.org/10.3758/BF03196311.

Plaut, D. C., & Booth, J. R. (2000). Individual and developmental differences in semantic priming: Empirical and computational support for a single-mechanism account of lexical processing. Psychological Review, 107(4), 786–823. https://doi.org/10.1037/0033-295X.107.4.786.

Plaut, D. C., McClelland, J. L., Seidenberg, M. S., & Patterson, K. (1996). Understanding normal and impaired word reading: computational principles. Psychological Review, 103(1), 56–115. Retrieved from https://citeseerx.ist.psu.edu.

Posner, M. I., & Snyder, C. R. R. (1975). Attention and cognitive control. In R. Solso (Ed.), Information processing and cognition: The Loyola symposium (pp. 55-85). Hillsdale, NJ: Erlbaum.

Qian, D. D. (2002). Investigating the relationship between vocabulary knowledge and academic reading performance: An assessment perspective. Language learning, 52(3), 513-536. https://doi.org/10.1111/1467-9922.00193.

Ramscar, M., & Baayen, H. (2013) Production, comprehnsion and synthrsis: A communicative perspective on language, Frontiers in Psychology, 4(233), 1-4. https://doi.org/10.3389/fpsyg.2013.00233.

Ramscar, M., & Port, R. (2015). “Categorization (without categories)". In E. Dabrowska & D. Divjak (Eds.), Handbook of Cognitive Linguistics (pp. 75-99). Berlin, München, Boston: De Gruyter Mouton. https://doi.org/10.1515/9783110292022-005.

Reicher, G. M. (1969). Perceptual recognition as a function of meaningfulness of stimulus material. Journal of Experimental Psychology, 81(2), 275-280. https://doi.org/10.1037/h0027768.

Rumelhart, D.E. & McClelland, J. (1986). On learning the past tense of English verbs. In D. E. Rumelhart & J. L. McClelland (Eds.), Parallel Distributed Processing (Vol. 2). Cambridge, Mass: MIT Press.

Schweickert, R. (1978). A critical path generalization of the additive factor method: analysis of a Stroop task. Journal of Mathematical Psychology, 18(2), 105–139. https://doi.org/10.1016/0022-2496(78)90059-7.

Seidenberg, M. S., & McClelland, J. L. (1989). A distributed developmental model of word recognition and naming. Psychological Review, 96(4), 523–568. https://doi.org/10.1037/0033-295X.96.4.523.

Sharkey, A. J., & Sharkey, N. E. (1992). Weak contextual constraints in text and word priming. Journal of Memory and Language, 31(4), 543-572. https://doi.org/10.1016/0749-596X(92)90028-V.

Sweller, J., van Merriënboer, J. J., & Paas, F. (2019). Cognitive architecture and instructional design: 20 years later. Educational Psychology Review, 31, 261–292. https://doi.org/10.1007/s10648-019-09465-5.

Telford, C. W. (1931). The refractory phase of voluntary and associative responses. Journal of Experimental Psychology, 14(1), 1–36. https://doi.org/10.1037/h0073262.

UNESCO Institute for Statistics (UIS). (2020). Trends in International Mathematics and Science Study. Retrieved from https://naec.news.

Waechter, S., Stolz, J. A., & Besner, D. (2010). Visual word recognition: On the reliability of repetition priming. Visual Cognition, 18(4), 537-558. https://doi.org/10.1080/13506280902868603.

Welford, A.T. (1952). The "psychological refractory period" and the timing of high-speed performance: A review and a theory. British. Journal of Psychol, 43(1), 2. Retrieved from https://www.proquest.com.

Wheeler, D. D. (1970). Processes in word recognition. Cognitive Psychology, 1(1), 59–85. https://doi.org/10.1016/0010-0285(70)90005-8.

Whittlesea, B. W. A., & Jacoby, L. L. (1990). Interaction of prime repetition with visual degradation: Is priming a retrieval phenomenon? Journal of Memory and Language, 29(5), 546-565. https://doi.org/10.1016/0749-596X(90)90051-Z.

Yap, M. J., Pexman, P. M., Wellsby, M., Hargreaves, I. S., & Huff, M. J. (2012). An abundance of riches: Cross-task comparisons of semantic richness effects in visual word recognition. Frontiers in Human Neuroscience, 6, 1–10. https://doi.org/10.3389/fnhum.2012.00072.

Published

2022-11-20

How to Cite

Ntim, S. (2022). Automatic priming, schema induction and spread of activation in l2 lexical access: Do differences in vocabulary size and depth of priming remain invariant?. International Journal of Studies in Psychology, 2(2), 1-9. https://doi.org/10.38140/ijspsy.v2i2.716