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Aritmetiese optelling (2+2=4) en ’n geval van geometriese
optelling (die vektorsom 2+2=√8) dui op verskillende soorte
feite. Hierdie feite is nie ‘brute’ feite nie, aangesien hulle bepaal
word deur ooreenstemmende getalswette en ruimte-wette. Die
oorspronklike ruimtelike aard van ’n lyn (soos gegee in die een-
dimensionele uitgebreidheid daarvan) kan nie bloot gedefinieer
word deur die maat van die uitgebreidheid daarvan nie, waar
hierdie uitgebreidheid uitdrukking in die nosie van afstand (al
dan nie, in die sin van ’n metriese ruimte verstaan) vind.
Laasgenoemde kan slegs gespesifiseer word deur ’n
getalswaarde aan die lengte van ’n lyn toe te ken – maar ’n lyn
self is sekerlik nie ’n getal nie. Die blote onderskeiding tussen
verskillende ruimtelike dimensies (een, twee en meer
dimensies) vereis ’n implisiete verwysing na getal (die getalle 1,
2, ensomeer). Sodra die onderskeidenheid van getal en ruimte
onderken word ontstaan die vraag watter een van hierdie twee
gebiede meer basies is (in die sin dat dit die sin van die ander
aspek veronderstel) en hoe die onverbreeklike samehang
tussen beide aspekte daar uitsien. Teen die einde word
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aangetoon hoedat die drie primitiewe terme wat in Hilbert se
aksiomatisering van die meetkunde gebruik word ’n uitdrukking
is van die ruimtelike subjek-objek-relasie.

1. Law and factuality

The statement that “a straight is line the shortest distance between two
points” seems to be as self-evident as the statement that “2 + 2 = 4”. In an
earlier phase of his development Russell ‘corrected’ this definition: “A
straight line, then, is not the shortest distance, but is simply the distance
between two points” (Russell, 1897:18). The three key terms in this
statement concern spatial configurations, namely the terms ‘line’, ‘point’
and ‘shortest’. Yet the key element maintained in Russell’s improved
definition echoes something of our awareness of numerical relations:
distance.

1
If this is indeed the case it may turn out that an analysis of this

statement will at once get entangled in the consideration of arithmetical
and spatial issues, which means that it cannot be analyzed purely in spatial
(or geometrical) terms. In order to broaden our perspective such that
considerations stemming both from the domains of number and space will
receive their due attention, we introduce another ‘sum’ – one in which it is
alleged that 2+2 is not equal to 4 but to √8.

At first sight this alternative sum, 2+2=√8, may be questioned, owing to
the fairly widespread conviction that mathematical issues are instances of
a compelling rationality. Recently Fern for example wrote:

Mathematical calculations are paradigmatic instances of
universally accessible, rationally compelling argument. Anyone
who fails to see “two plus two equals four” denies the Pythagorean
Theorem, or dismisses as nonsense the esoterics of infinitesimal
calculus forfeits the crown of rationality (Fern, 2002:96-97).

Someone who shares the conviction of Fern may want to reinforce the
original claim, namely that 2+2=4, by referring to the addition of 2 fingers
and another two 2 fingers, which indeed adds up to 4 fingers. Apparently
this specified addition conclusively confirms the soundness of the initial
statement that 2+2 is equal to 4. Unfortunately the issue is more
complicated than it may seem at first sight, for the alternative assertion,
namely that 2+2=√8, implicitly changed the context of addition, for when
a person walks 2 miles north and afterwards 2 miles east, then that person
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1 We restrict our discussion to metrical spaces. Mac Lane accepts space as “something
extended” and on the basis of the notion of ‘distance’ defines a metric space (see Mac
Lane, 1986:16-17). An explanation of the mutual relation between discreteness and
continuity within a topological context requires a different argument. A starting-point
for such a discussion is found in White (1988:1-12).



will be √8 miles away from the initial point of departure. This context
concerns spatial addition, that is mathematically treated in vector
analysis, where a vector possesses both distance (magnitude) and
direction.2 One can capture this altered context by underscoring the
numerals involved in order to specify the fact that we are dealing with
vectors: 2+2=√8. The upshot is that we now clearly have two different
kinds of facts related to addition at hand: a numerical fact (designated as
2+2=4) and a geometrical fact (designated as 2+2=√8). In order to capture
the specifications of this example one may construct the following figure:

These facts are not unqualified – that is to say, they are distinct because they
are differently qualified, respectively as numerical and as spatial. They are
therefore not simply ‘facts’ in themselves. In their factuality they are
delimited by alternative order-determinations. The operation of numerical
addition displays an order-determination different from the operation of
spatial addition, as is clearly manifested in the alternative sums: 4 and √8. In
our example the underlying “order diversity” therefore makes possible the
indicated distinction between numerical and spatial facts.

But there is something else present in this distinction between two kinds
of facts, namely the reference to the operation of addition. Modern
mathematical set theory normally first of all approaches this domain in
terms of the algebraic structure of fields – where the (binary) operations
called addition (+) and multiplication (.) meet the field axioms (specified
as laws).

3
The fact that addition and multiplication within a system of
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2 In the first half of the 19th century Grassmann already introduced the idea of a vector.
He designnated such a line segment (‘Strecke’) with a specific direction and length on
a specific straight line as a “linienteil” which became more generally known in
German literature as a vector (‘Vektor’): “Graßmann nannte eine solche Strecke
bestimmter Richtung und Länge auf einer bestimmten Geraden einen Linienteil; jetzt
ist in der Deutschen Literatur der Name Vektor üblicher” (Klein, 1925:24). Hedrick
and Noble mistranslated “Richtung und Länge” as “length and sense,” perhaps because
later on in the same original German paragraph Klein himself used the German words
“Länge und Sinn”) – also explaining why the word order of “Richtung und Länge” was
reversed to “length and sense” by them (see Klein, 1939:22).

3 A field is defined as a set F such that for every pair of elements a, b the sum a+b and
the product ab are still elements of F subject to the associative and commutative laws



numbers yield numbers belonging to the initial set is also mathematically
articulated by saying that the system of numbers under consideration is
closed under the operations (laws) of addition and multiplication. The
most basic instance of this strict correlation between (arithmetical) laws
and numbers subject to them is found in the system of natural numbers
where it is immediately evident that the addition and multiplication of any
two natural numbers once more yield natural numbers (s = system; t = set):

system of na- operations / laws: (+,x)
ural numbers Ns numerical subjects: Nt = (1, 2, 3, ...)

The designation ‘system’ therefore comprises both arithmetical laws and
arithmetical subjects – in the sense that the laws (operations) not only
determine the behavior of the subjects but also delimit them. What has
been explained above therefore means that the system of natural numbers
finds its determination and delimitation in the operations of addition and
multiplication that are closed over the set of natural numbers – in the sense
that adding or multiplying any two natural numbers will always yield
another natural number.

4

Introducing further arithmetical laws or operations will invariably call for
additional (correlated) numbers that are factually subjected to these new
determining and delimiting arithmetical laws. For example, if the
operation of subtraction is added to those of addition and multiplication,
the correlating set of integers (Zt) is constituted – and considered in their
correlation this yields the system of integers. Likewise, extending the
arithmetical operations by introducing division the correlating set of
fractions is needed within the system of rational numbers.

system of ratio- operations / laws: (+,x, –, : )
nal numbers Qs numerical subjects: Qt = (a/b; a,b ε Zt / b≠0)

5
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for addition and multiplication, and combined to the presence of a zero element and a
unit (or identity) element (see Bartle, 1964:28; Berberian, 1994:1 ff.). This definition
of a field is then expanded to that of an ordered field and it is finally combined with
the idea of completeness.

4 The ultimate presupposition of these operations is found in the numerical order of
succession. The latter is primitive and comes to expression in the principle of induction
which, according to Weyl, safeguards mathematics from collapsing into an enormous
tautology (1966:86). The Peano axioms (for the positive integers) yield a mathematical
articulation of this primitive arithmetical order of succession. The correlation of the
operations of addition and multiplication and their delimiting and determining role in
respect of numerical subjects are consistent with Peano’s axioms because they are
entailed in the complete ordered field of real numbers (see Berberian, 1994:230).

5 This explanation, in terms of the strict correlation between operations at the law side
and numerical subjects at the factual side, is formally similar to the way in which Klein
introduces negative numbers and fractions (by means of the reverse operations of
addition and multiplication – see Klein, 1932:23 ff. & 29 ff.).



Against this background it is clear that the systematic arithmetical
statement 2+2=4 does not designate a “brute fact” (a fact “in itself,” “an
sich”), since the factual relation specified for numerical subjects (selected
from the set of natural numbers) that are involved in it, exhibits the
measure of the numerical law of addition. One can also say that this state-
ment conforms to the determining and delimiting effect of the arithmetical
law of addition. Consequently, the statement that 2+2 is equal to 4
concerns a law-conformative (arithmetical) state of affairs – it displays a
specific lawfulness or orderliness for it meets the conditions set by the
presupposed arithmetical order.

Envisaging all arithmetical laws at once suggests that we may speak of a
unique sphere of laws inextricably correlated with diverse sets of numbers
subjected to these laws. Another way to capture this situation is to speak
about a numerical sphere in which arithmetical laws are strictly correlated
with arithmetical subjects (numbers); in other words within this numerical
domain a distinction is made between its law side (order side) and its
factual side. Myhill, who appreciates Brouwer as the originator of
“constructive mathematics,” introduces the notion of a ‘rule’ (the
equivalent of what we have designnated as “law side”) as “a primitive one
in constructive mathematics”; “We therefore take the notion of a rule as an
undefined one” (Myhill, 1972:748).

6
In his encompassing introduction to

set theory (the third impression), Adolf Fraenkel refers to the peculiar
constructive definition of a set which accepts as a foundation the concept
of law and the concept of natural number as intuitively given.

7

The geometrical sum: 2+2=√8 belongs to a different domain, to a different
sphere of laws, one where it is also possible to distinguish between a law
side (order side) and a factual side. The sphere of spatial laws differs from
the sphere of numerical laws – in an exemplary way expressed in the
difference between 2+2=4 and 2+2=√8.

2. Distance

We may now return to the mentioned key element in the modified
definition given by Russell, distance: a line “is simply the distance
between two points”.

The first observation to be made in this connection is to establish that the
notion of a ‘line’ as the ‘distance’ between two ‘points’ concerns spatial
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6 Myhill received his Harvard Ph.D. under W.V. Quine.
7 “Ohne die Stellung wieterer intuitionistischer Gruppen und anderer Richtungen …

zum Mengenbegriff zu schildern, sei hier noch auf die wesentlich abweichende
Auffassung Brouwers hingewiesen. Dieser stellt eine eigenartige rein konstruktive
Mengendefinition an der Spitze, bei der der Begriff der natürliche Zahl und der des
Gesetzes als intuitiv gegeben zugrunde gelegt werden“ (Fraenkel, 1928:237).



realities. A line is a spatial configuration, not an arithmetical one. Yet the
crucial question is: how can one designate the ‘distance’ between two
points? The answer is: by specifying a number (for example by saying it
is 3 inches long). The problem with this answer is that something spatial,
namely a ‘line’, is now apparently equated with something numerical,
namely ‘distance’!

8
Does this mean that the domains of space and number

are coinciding? If it is the case, then a question of priority arises: is space
numerical (then a ‘line’ is identical to ‘distance’, i.e., to number), or is
number spatial (then number, i.e., ‘distance’ is identical to space, i.e., a
‘line’)?

9
The situation is further complicated by the fact that the number

specified (such as ‘3’) does not stand on its own, i.e., it appears within a
non-numerical context – one in which the general issue of magnitude
prevails, with length as a one-dimensional magnitude. And to add insult to
injury, we now suddenly have to account for another spatial notion:
dimensionality! But still new problematic questions are generated, for in
our example of “3 inches” – related to the extension of a line – the
reference to length brought with it the (spatial) perspective of one
dimension (length specifies magnitude in the sense of one dimensional
extension). On the one hand this suggests extension, which presumably
essentially belongs to our awareness of space, while at the same time, just
as in the case of the term ‘distance’, it reveals a connection with number,
for one can speak about 1-dimensional extension (magnitude; i.e., of
length), 2-dimensional extension (magnitude; i.e., of area), 3-dimensional
extension (magnitude; i.e., of volume), and so on. Even if priority is given
to the spatial context by admitting that the distinction between different
dimensions is indeed something spatial, no one can deny that in some or
other way number here plays a foundational role, for without number the
given specification regarding 1, 2, or 3 dimensions is unthinkable.
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8 In passing we note that the term ‘distance’ in yet a different way evinces an intrinsic
connection with the meaning of number because a line is supposed to be the distance
between two points. Multiplicity is numerical; a multiplicity of points is spatial.
Furthermore, the term ‘inch’ here has the function of the unit of measurement, i.e. the
unit length. Therefore this unit is on a par with the notion of distance, because number
1 and the number 3 respectively represent these two lengths.

9 Of course this concise dilemma reflects the basic contours of the history of
mathematics as a discipline, for the initial Pythagorean claim was that everything is
number. With the discovery of irrational numbers (where it turned out that there are
‘incommensurable’ ratios) mathematics was turned into geometry. However, during
the 19th century – owing to the work of Cauchy, Weierstrass, Dedekind (1887, 1901)
and Cantor(1962) arithmeticism once more gained the upper hand, although it should
be remembered that Frege, after the failure of his logicist program, close to the end of
his life, reverted to the view that mathematics essentially is geometry: “The more I
have thought the matter over, the more convinced I have become that arithmetic and
geometry have developed on the same basis – a geometrical one in fact – so that
mathematics in its entirety is really geometry” (Frege, 1979: 277).



Clearly, the term ‘distance’ is embedded within the domain of space and it
also evinces a strict correlation between an order of extension (the law side
of this domain – i.e., dimensionality) and factually extended spatial
subjects – spatial figures (such as 1-dimensional ones, i.e, lines), 2-
dimensional ones, i.e., areas) and 3-dimensional ones (i.e., volumes).

The complexities generated by a consideration of extension in the sense of
an order of extension and of factually extended spatial subjects (spatial
figures) adds weight to the suggestion that, although something like a line
has a spatial nature, its extended character cannot reveal its true spatial
meaning without showing a dependence upon the meaning of number. The
reason for this acknowledgement is found in the intrinsic role of numeri-
cal terms that are ‘coloured’ by space, such as distance and dimension.
Within a numerical context, such as what is mathematically known as
“real analysis,” one can easily dispense with the concept of distance. But
textbooks on real analysis sometimes still acknowledge that the geometric
meaning of the term ‘distance’ may be useful, for “instead of saying that
|a – b| is ‘small’ we have the option of saying that a is ‘near’ b; instead of
saying that ‘|a – b| becomes arbitrarily small’ we can say that ‘a
approaches b’, etc.” (Berberian, 1994:31)

3. Back to space

Two years after Russell gave his mentioned modified definition of a line
as the distance between two points, the German mathematician, David
Hilbert, published his axiomatic foundation of geometry: Grundlagen der
Geometrie (1899). In this work Hilbert abstracts from the contents of his
axioms, based upon three undefined terms: “point,” “lies on,” and “line.”
Suddenly the term ‘distance’ disappeared. The next year, when Hilbert at-
tended the second international mathematical conference in Paris, he
presented his famous 23 mathematical problems that co-directed the
development of mathematics during the 20th century in a significant way
– and in problem 4 he provides a formulation that opens up a new
perspective on this issue, for instead of speaking of the distance between
two points he talks of a straight line as the (shortest) connection of two
points.

10
This choice of words completely avoids the traditional view, even

found in the work of a contemporary mathematician who still believes that
the “straight line is the shortest distance between two points” (Mac Lane,
1986:17). 

Hilbert’s German term ‘Verbindung’ (‘connection’) does not define a line
since it presupposes the meaning of continuous extension. Every part of a

Tydskrif vir Christelike Wetenskap - 2007 (3de & 4de Kwartaal)

57

10 “[Das] Problem von der Geraden als kürzester Verbindung zweier Punkte” (see
Hilbert, 1970:302).



continuous line coheres with every adjacent part in the sense of being
connected to it. Although it is tautological to say that the parts of a
continuous line are fitted into a gapless coherence, it says nothing more
than to affirm that the parts are connected. In this sense the connection of
two distinct spatial points also highlights the presence of (continuous)
spatial extension between the points that are connected to each other. In
other words, two points cannot be connected by a third point, but only by
means of a line, i.e. through spatial extension.

Combined with the primitive terms employed in his axiomatic foundation
of geometry (‘line’, ‘lies on’ and ‘point’) the term ‘connection’ no longer
equates a line with its distance. Once ‘liberated’ from this problematic
bondage, alternative options emerge in order to account for the meaning
of the term ‘distance’. If distance is the 1-dimensional measure of factual
(spatial) extension, then one can do two things at once:

(i) acknowledge the spatial context of this measure (1-dimensional
magnitude) and

(ii) allow for the reference to number that is evident both in the ‘1’
of 1-dimensional extension and in the (numerically specified)
length evident in ‘distance’ as a specified (factual) spatial
magnitude.

The core meaning of space, related to the awareness of extension and
dimensionality, now acquires a new appreciation, further supported by the
undefined nature of the term ‘line’ in Hilbert’s 1899 work. The message is
clear: if the core meaning of space (extension) is indefinable and primitive,
then it is impossible to attempt to define a line by using a non-original term
within space, such as the term ‘distance’. Distance as the measure of
extension of a (straight) line depends upon and presupposes the existence
of the line in its primitive 1-dimensional extension and can therefore never
serve as a definition of it. Therefore the ‘definition’ of a (straight) line as
“the distance between two points” (Russell) presupposes what it wants to
define and consequently begs the question.

3.1 What is presupposed in space?
In our discussion of the question whether or not the domains of space and
number are coinciding we have started by analyzing some consequences of
the option that they do coincide. However, this led to an acknowledgement
of the fact that every specification of spatial configurations is unavoidably
connected with terms reflecting some or other coherence with number
(magnitudes and the number of dimensions). This outcome opens up the
way to an alternative: investigate the consequences of the assumption that
although space and number are unique and distinct they still unbreakably
cohere. The new question to be analyzed is then: what is the interrelation
between the spatial and the numerical?
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If the measure of the factual (one dimensional) extension of a straight line
could be specified by its distance, then the distance of a line not only
presupposes its spatial extension since it also presupposes the intrinsic
interconnection between the meaning of space and the meaning of
number. Various mathematicians had an appreciation of this state of
affairs. Paul Bernays (the co-worker of Hilbert), for example, says that the
idea of continuity is a geometrical idea which is expressed by analysis in
an arithmetical language (Bernays, 1976:74).

11

But let us consider further options. The mere possibility to juxtapose two
distinct ‘facts’, such as the statements that 2+2=4 and 2+2=√8, points in
the direction of acknowledging two unique domains – each with its own
sphere of laws and correlated subjects. But this basic acknowledgement
does not solve the subsequent problems, for the following two issues are
still in need of clarification:

(i) which one of these two domains is more fundamental, in the
sense of foundational, to the other? and

(ii) how should one account for the interconnections (interrelations)
between these two domains?

3.1.1 Which region is more basic?
Let us start with the approach of Bernays where he considers the way in
which one can distinguish between our arithmetical and geometrical
intuition. He rejects the widespread view that this distinction concerns
time and space, for according to him the proper distinction needed is that
between the discrete and the continuous.

12
But then the question recurs:

what is the relationship between the ‘discrete’ and ‘continuous’?
13
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11 “Die Idee des Kontinuums ist eine geometrische Idee, welche durch die Analysis in
arithmetischer Sprache ausgedrückt wird.”

12 “Es empfiehlt sich, die Unterscheidung von ‘arithmetischer’ und ‘geometrischer’
Anschauung nicht nach den Momenten des Räumlichen und Zeitlichen, sondern im
Hinblick auf den Unterschied des Diskreten und Kontinuierlichen vorzunehmen”
(Bernays, 1976:81). Rucker also states: “The discrete and continuous represent
fundamentally different aspects of the mathematical universe” (Rucker, 1982:243).

13 The problem concerning which one is more basic – number or space – cannot be
solved by a genus proximum – albeit that of Aristotle with his distinction between a
discrete quantity and a continuous quantity or that of the structuralist Resnik with his
distinction between discrete patterns and continuous patterns (cf Aristotle: “Quantity
is either discrete, or continuous” – Categ.4 b 20; and Resnik, 1997:201 ff. 224 ff.). In
terms of the distinction between the domain of number and that of space the term
“pattern” in the first place derives its meaning from spatial configurations or patterns.
Only afterwards one can stretch this term – metaphorically or otherwise – in order to
account for quantitative relations as well. Whatever the case may be, speaking of
“discrete patterns” just as little bridge the gap between discreteness and continuity as
referring to the “domain of number” does it (where the term “domain” also derives



Fraenkel et.al. even speak of a ‘gap’ in this regard and add that it has
remained an “eternal spot of resistance and at the same time of
overwhelming scientific importance in mathematics, philosophy, and even
physics” (Fraenkel et.al., 1973:213). These authors furthermore point out
that it is not obvious which one of these two regions – “so heterogeneous
in their structures and in the appropriate methods of exploring” – should
be taken as starting-point. Whereas the “discrete admits an easier access to
logical analysis” (explaining according to them why “the tendency of
arithmetization, already underlying Zenon’s paradoxes may be perceived
in [the] axiomatics of set theory”), the converse direction is also
conceivable, “for intuition seems to comprehend the continuum at once,”
and “mainly for this reason Greek mathematics and philosophy were
inclined to consider continuity to be the simpler concept” (Fraenkel et.al.,
1973: 213). Of course the modern tendency towards an arithmetized
approach (particularly since the beginning of the 19th century) chose the
alternative option by contemplating the primary role of number. Although
Frege – as mentioned in note three above – by the end of his life equated
mathematics with geometry (consistent with the just mentioned position
of Greek mathematics), his initial inclination certainly was to opt for the
foundational position of number. Already in 1884 he asked if it is not the
case that the basis of arithmetics is deeper than all our experiential
knowledge and even deeper than that of geometry?

14

From our discussion of the difference between an arithmetical and a
spatial sum and in particular from our remarks about the term ‘distance’ it
may be possible to derive an alternative view on the order relation between
the regions of discreteness and continuity. Suppose we consider the idea
that discreteness constitutes the core meaning of the domain of number
and that continuous extension highlights the core meaning of space. Then
these core meanings guarantee the distinctness (uniqueness) of each
domain. The domain of number, with its sphere of arithmetical laws and
numerical subjects, is then seen as being stamped or qualified by this core
meaning of discreteness. Likewise the domain of space, with its sphere of
spatial laws and spatial subjects, is then viewed as being qualified by the
core meaning of continuous extension.

But we have seen that a basic spatial subject, such as a (straight) line,
cannot be understood without some or other reference to the meaning of
number, for observing the measure of the line’s extension requires the
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from the meaning of space). The issue at stake in this connection is one falling outside
the scope of this article for it concerns what should be treated in an analysis of the
elementary basic concepts of a scholarly discipline (such as mathematics).

14 “Liegt nicht der Grund der Arithmetik tiefer als der alles Erfahrungswissens, tiefer
selbst als der der Geometrie? ” (Frege, 1884:44).



notion of ‘distance’ that involves number, and since a line is a spatial
figure extended in 1-dimension, it clearly only has a determinate meaning
in subjection to the first order of spatial extension. We have argued that in
both domains (number and space) there is a strict correlation between the
law side and the factual side. In the case of space it is therefore possible
to discern a reference to number both at the law side and the factual side.
Speaking of one or more dimensions presupposes the meaning of number
on the law side and specifying the one dimensional extension (magnitude)
of something like a line presupposes the meaning of the number employed
in the designation of the length of the line. The domain of number
therefore appears to be more basic because an analysis of the meaning of
space invariably calls upon foundational arithmetical considerations.

This conclusion is further supported by the approach of Maddy where she
argues that most recent textbooks “view of set theory as a foundation of
mathematics” (Maddy, 1997:22) and that a set theoretic foundation can
“isolate the mathematically relevant features of a mathematical object” in
order to find a “set theoretic surrogate” for those features (Maddy,
1997:27, 34).

15
Bernays categorically asserts that “the representation of

number is more elementary than geometrical representations” (Bernays,
1976:69, see also page 75: “For our human understanding the concept of
number is more immediate than the representation of space”). In general
one may view the arithmeticism of Weierstrass, Dedekind and Cantor as
an (over-estimated) acknowledgement of the foundational position of the
domain of number.

3.1.2 Interconnections between functional domains
A metaphorical way to capture this state of affairs is to use an image from
human memory by saying that within the meaning of space (both at the
law side and the factual side), we discover configurations reminding us of
the core meaning of number. A key element in all metaphorical
descriptions is found in the connection between similarities and dif-
ferences. Whenever what is different is shown in what is similar, one may
speak about analogies. But we want to broaden the scope of an analogy in
order to include more than what is normally accounted for in a theory of
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15 Already in 1910 Grelling recognized set theory as the foundation of mathematics as a
whole: “Zuerst ausgebildet als Hilfsmittel der Untersuchung bei gewissen Fragen der
Analysis, hat sich die under den Händen inhres Schöpfers Georg Cantor und sein
Schüler zu einer selbständigen metahmatischen Disziplin entwickelt, die heute die
Grundlage der gesamten Mathematik bildet” (“In the first place developed as an
auxilliary tool for the investigation of certain questions of analysis [set theory] in the
hands of Cantor and his pupils [it was] developed into an independent mathematical
discipline. Currently it constitutes the foundation of mathematics in its entirety”
(Grelling, 1910:6).



metaphor. Our first designation already achieves this goal, for whenever
differences between entities and properties bring to expression what is
similar between those entities or properties, we meet instances of an
analogy.

16
Implicit in the nature of an analogy is the distinction between

something original and something else which ‘reminds’ one of what is
originally given but which is now encountered in a non-original context,
i.e., within an analogical setting. This is exactly what we have noticed in
the terms ‘distance’ and ‘dimension’ – for in both cases we are reminded
of the quantitative meaning of number. In terms of the idea of an analogy
one can say that there is an analogy of number on the law side of the
spatial aspect (one, two, three or more dimensions) and that there is an
analogy of number at the factual side of the spatial aspect (magnitude – as
the correlate of different orders of extension: in one dimension magnitude
appears as length, in two dimensions it appears as area, in three as volume,
etc.). An account of the basic position of number can now be articulated in
terms of the idea of analogies, for since basic numerical analogies are
presupposed within the domain of space, the original meaning of number
is indeed foundational for the meaning of space.

The attentive reader would have noticed that in the previous paragraph we
have introduced a new word in order to refer to the domains of number and
space, namely the term ‘aspect’. The underlying hypothesis of this usage
is found in the theory that the various aspects of reality belong to a distinct
dimension which is fundamentally different from the concrete what-ness
of (natural and social) entities (such as things, plants, animals, artifacts,
societal collectivities and human beings). These concrete entities (and the
processes in which they are involved) all function within the different
aspects of reality. Questions about the way in which entities exist concern
their how-ness, their mode of being. Aspects in this sense are therefore
modes of being. That my chair is one and has four legs reveal its function
within the quantitative mode of reality; that it has a certain shape and size
highlights its spatial function; that it has a certain economic value
demonstrates its function within the economic mode of reality, and so on.
This dimension of functions or aspects can also be designated as that of
modalities or modal functions. What has already been said about the
domains of number and space concern properties that may serve to define
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16 Whenever entities are involved in the figurative speech we employ such designations
are considered to be metaphorical. But as soon as similarities and differences between
modal functions (as they will be explained below) are captured, these purely aspectual
interrelations represent a domain of analogies distinct from metaphors. When purely
intermodal connections (analogies) are metaphorically explored, an element of the
entitary dimension of reality will always be present (such as it is found in the metaphor
of a person being ‘reminded’ of an original domain).



the nature of an aspect:
17

every aspect contains a sphere of modal
(functional) laws (at its law side); a factual side (subjected to modal laws);
and a core meaning qualifying, characterizing or stamping all the
structural moments discernable within an aspect (in particular also the
analogical elements pointing to the meaning of other modal functions of
reality). This core meaning or meaning-nucleus guarantees the uniqueness
and irreducibility of every aspect and it underlies the inevitable use of
primitive (= indefinable) terms by those disciplines that explore a specific
modal aspect as angle of approach to reality.

Some of these structural features are captured in the following sketch:

4. Philosophical implications

Within the quantitative aspect, for example, the order of succession on its
law side lies at the basis of arithmetical operations (such as addition and
multiplication and their inverses) and it makes possible our basic numeri-
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17 Note that any description of modal aspects inevitably employs metaphors (involving
entitary analogies). Fore example, one may say that aspects are ‘points of entry’ to
reality, that they provide an ‘angle of approach’ to reality, and so on. Conversely, the
modal aspects provide access to the dimension of entities – they may serve as modes
of explanation of concrete reality.



cal awareness of greater and lesser.
18

Within space this awareness of
greater and lesser may occur in the context of dimensional extension (for
example as the vertical opposition of higher and lower). In their metaphor
theory Lakoff and Johnson do not consider ontic aspects and their
interconnections exemplified in modal analogies, for they restrict
themselves to mappings between “conceptual domains.” Consequently,
they look at quantity and verticality in terms of “the associations between
More and Up and [48] between Less and Down” which “constitute a
cross-domain mapping between the sensorimotor concept of verticality
(the source domain) and the subjective judgment of quantity” (the target
domain) (Lakoff & Johnson, 1999:47-48). However, we have argued that
the nature of dimensional extension is not purely spatial because
inherently it reveals numerical analogies (both at the law side and the
factual side of this aspect). Therefore the notion of verticality is embedded
in that of dimensionality – and the latter collapses into nothingness outside
its coherence with the (foundational) quantitative meaning of one, two and
three. Whereas the “conceptual domains” of Lakoff and Johnson may be
disconnected, the ontic nature of the aspects of number and space displays
an unbreakable connectedness which is seen in the modal analogies that
underscore the fact that the unique meaning of an aspect comes to
expression through its coherence with other aspects.

19

4.1 The various academic disciplines are dependent on
philosophical presuppositions
Whereas the various academic disciplines (special sciences) in general
approach reality through the gateway of specific modal aspects, it belongs
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18 The arithmetical order of succession determines our most basic intuition of infinity, in the
literal sense of one, another one, and so on, without an end, endlessly, indefinitely,
infinitely. The traditional designation of this kind of infinity, known as the potential
infinite, lacks an intuitive appeal. But when we alternatively refer to the ‘successive
infinite’ this shortcoming is left behind. The other kind of infinity, traditionally known as
die actual infinite, also calls for an ‘intuitively transparent’ designation (see note 26
below). The successive infinite, presupposed in the infinite divisibility of continuity,
makes possible induction, which, according to Weyl, guarantees that mathematics does
not collapse into an enormous tautology (Weyl, 1966:86). According to Gödel non-
“tautological” relations between mathematical concepts “appears above all in the
circumstance that for the primitive terms of mathematics, axioms must be assumed”
(1995:320-321). In the case of finitism where the “general concept of a set is not admitted
in mathematics proper … induction must be assumed as an axiom” (Gödel, 1995:321).

19 In a more recent work their understanding of “conceptual metaphor” brought Lakoff
and Núñez to the view that continuity and discreteness actually are opposites (Lakoff
& Núñez, 2000:324) – in stead of merely being uniquely different but mutually
cohering modal aspects of reality. Opposites occur within aspects (like ‘high’ and ‘low’
within the spatial aspect), but not between aspects.



to the task of philosophy to account for the uniqueness and coherence of
these different modes of explanation as a special case of the basic
(philosophical) problem of unity and diversity.

20
The questions asked in

the title of this article paved the way for this insight, because both in
connection with the claim that a line is the ‘distance’ between two points
and in connection with the difference between arithmetical addition
(2+2=4) and spatial addition (2+2=√8) our considerations invariably were
confronted with two different aspects, namely those of number and
space.

21
But the question regarding the mutual relationship between

number and space caused a dialectical movement to and fro between the
extremes of arithmeticcism and geometricism. The philosophical
importance of considering more than one aspect therefore first of all stems
from the history of mathematics, for we have noted that the initial
Pythagorean tendency to arithmetize was followed by a geometrization
which, since Cauchy and Weierstrass, once again reverted to an assumed
arithmetization (in modern set theory).

At this point Fern’s mentioned claim that “[M]athematical calculations are
paradigmatic instances of universally accessible, rationally compelling
argument” (Fern, 2002:96-97) may be contrasted with the assessment of
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20 In passing we may mention the different modes of explanation employed during the
history of our understanding of matter. In the early modern era the Greek focus on
number (the Pythagoreans) and the switch to space was followed by the exploration of
the kinematic mode of explanation. As primary qualities of matter Galileo considers
arithmetical properties (countability), geometrical properties (form, size, position,
contact) and kinematical properties (movement). Hucklenbroich writes: “G. Galilei
zählt als primäre Qualitäten der Materie arithmetische (Zählbarkeit), geometrische
(Gestalt, Größe, Lage, Berührung) und kinematische Eigenschaften (Beweglichkeit)
auf” (Hucklenbroich, 1980:921). Only at the beginning of the 20th century modern
physics came to peace with the term force. Hertz still believed that he had to reject the
(physical) concept force, claiming that it is something inherently antinomic (cf.
Katscher, 1970:329) – a view similar to the one found in Bertrand Russell’s work:
Principles of Mathematics. The only difference is that Russell speaks about ‘force’ as
a “mathematical fiction”: “The first thing to be remembered is – what physicists now-
a-days will scarcely deny – that force is a mathematical fiction, not a physical entity”
(Russell, 1956:482; cf. 494 ff.). The different ‘Meßgrößen’ (units of measurement) dis-
tinguished by Lorenzen in his ‘proto-physics’, are also strictly correlated with the
spatial, kinematical and physical contexts in which such magnitudes appear: length,
duration, mass and charge (see Lorenzen, 1976:1 ff.).

21 Gödel provided his own account of the dimension of modal aspects. Next to a physical
causal context within which something can be 'given', he refers to data of a second kind
which are open to 'semiperceptions'. He says that they are not something “purely
subjective as Kant says.” Rather they, too, “may represent ‘an aspect of objective
reality’, but, as opposed to the sensations, their presence in us may be due to another
kind of relationship between ourselves and reality (quoted by Wang, 1988:304).
Bernays also distinguishes between more than one kind of factuality - entitary (called
‘concrete’ by him) and modal-functional (he preferably speaks about ‘idealization’ in
the latter case) (Bernays, 1976:122).



Kline two decades earlier:

The developments in the foundations of mathematics since 1900
are bewildering, and the present state of mathematics is anomalous
and deplorable. The light of truth no longer illuminates the road to
follow. In place of the unique, universally admired and universally
accepted body of mathematics whose proofs, though sometimes
requiring emendation, were regarded as the acme of sound
reasoning, we now have conflicting approaches to mathematics.
Beyond the logicist, intuitionist, and formalist bases, the approach
through set theory alone gives many options. Some divergent and
even conflicting positions are possible even within the other
schools. Thus the constructivist movement within the intuitionist
philosophy has many splinter groups. Within formalism there are
choices to be made about what principles of metamathematics may
be employed. Non-standard analysis, though not a doctrine of any
one school, permits an alternative approach to analysis which may
also lead to conflicting views. At the very least what was
considered to be illogical and to be banished is now accepted by
some schools as logically sound (Kline, 1980:275-276).

22

Like every other academic discipline mathematics will always be confronted
with the philosophical problems of uniqueness and coherence (unity and
diversity). One facet of this foundational philosophical problem is given in the
unavoidability of employing analogical terms, i.e., in the use of terms
reflecting the interconnection between different aspects. This follows from the
fact that different modal aspects are interrelated in such a way that everyone,
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What Kline states does not concern diverging views of mathematics but mathematics
itself. Compare two further statements. Kleene remarks: “The intuitionists have
created a whole new mathematics, including a theory of the continuum and a set
theory. This mathematics employs concepts and makes distinctions not found in the
classical mathematics” (Kleene, 1952:52). And Beth says: “It is clear that intuitionistic
mathematics is not merely that part of classical mathematics which would remain if
one removed certain methods not acceptable to the intuitionists. On the contrary,
intuitionistic mathematics replaces those methods by other ones that lead to results
which find no counterpart in classical mathematics” (Beth, 1965:89).

22. This distinction between physical space and mathematical space - and about the infinite
divisibility of what is continuous is not concerned with the mathematical (set theoretical)
understanding of continuity, for in the latter case two criteria are applied. Cantor, for
example defines 'continuity' in terms of a perfectly coherent set (see Strauss, 2002:12-18)
- where the feature of 'coherence' is equivalent to the denseness of a set in itself (see
Natanson, 1960:37). The Cantorian definition of a continuous set as being perfectly
coherent (Cantor, 1962:194) is also explained by Klein (see Klein, 1928:105).
“Erst durch die zeitherige Entwicklung der Geometrie und der Physik tritt die
Notwendigkeit hervor, zwischen dem Raum als etwas Physikalischem und dem Raum
als eine ideellen, durch geometrische Gesetze bestimmten Mannigfaltigkeit zu
unterscheiden” (Bernays, 1976:37). (“Only through the contemporary development of
geometry and physics did it become necessary to distinguish between space as
something physical and space as an ideal multiplicity determined by spatial laws.”)



within its own structure, reflects the modal meaning of others. Physical
extension, for example, shows some likeness with spatial extension. However,
in this moment of similarity, the modal difference is simultaneously expressed
– spatial extension is continuous in the sense that it allows for an infinite
divisibility, whereas physical space is not continuous (since it is determined
by the quantum-structure of energy) and is therefore not infinitely divisible
(already in 1925 Hilbert mentioned this difference – see Hilbert, 1925:164).

23

Bernays also distinguishes between physical space and mathematical space.
24

Sensitive space, for example the sensitivity for distinct sensations on the
human skin, may be experienced as continuous in spite of the fact that the
stimuli are physically discontinuous (distinct) (see Gosztonyi, 1976, I:13).

4.2 The primitive meaning of space underlying Hilbert’s
primitive terms
Within the arithmetical aspect the factual relation between numbers is
constituted as subject-subject relations – as it is present in the addition of
numbers, the multiplication of numbers or establishing the numerical
difference between numbers (subtraction). However, at the factual side of
the spatial aspect there are not only subject-subject relations (such as
intersecting lines), for there are also subject-object relations present,
mainly expressed in the idea of a boundary.

Already in his abstraction theory Aristotle employed the notion of a
boundary (or limit) – which is intuitively immediately associated with
spatial notions (Aristotle used the term eschaton). By the 13th century AD
Thomas Aquinas accounts for a 1-dimensional line by means of a
descending series of abstractions. In contradistinction to natural bodies, all
mathematical figures are infinitely divisible. The Aristotelian legacy is
clearly seen in his definition of a point as the principium of a line (cf. Summa
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23. See also Brouwer, 1924:554. When a “species” π does not contain a continuum as part
it is of dimension 0 in the Menger-Urysohn sense.
It is therefore unjustifiable to see a line as a set of points. But it falls outside the scope
of this article to highlight the circularity present in Grünbaum’s attempt to argue for a
consistent conception of the extended linear continuum as an aggregate of unextended
elements (see Grünbaum, 1952). Grünbaum did not realize that the actual infinite – or,
as one may prefer to call it: the at once infinite – depends upon a crucial spatial feature,
namely the order of simultaneity. In the idea of the at once infinite the meaning of
number analogically points towards the meaning of space.

24. The system of rational numbers therefore represents an anticipatory analogy at the factual
side of the numerical aspect to the factual whole-parts relation within the spatial aspect.
The combined perspective thus obtained actually underlies the remark that within the
system of rational numbers we encounter an anticipation to a retrocipation. The
divisibility of an interval points forward to (anticipates) the factual spatial whole-parts
relation, whereas the latter (with its infinite divisibility) points backward (retrocipates)
to the order of succession on the law side of the numerical aspect.



Theologica, I,II,2), which indicates the fact that a determinate line-stretch
has points at its extremities (“cuius extremitates sunt duo puncta” – Summa
Theologica, I,85,8). This legacy returns in a somewhat more general form in
the 18th century (the era of the Enlightenment). Kant remarks:

Area is the boundary of material space, although it is itself a space, a line
is a space which is the boundary of an area, a point is the boundary of a
line, although still a position in space (Kant, 1783, A:170).

In 1912 Poincaré discussed similar problems. Concerning the way in
which geometers introduce the notion of three dimensions he says:
“Usually they begin by defining surfaces as the boundaries of solids or
pieces of space, lines as the boundaries of surfaces, points as the
boundaries of lines” (cf. Hurewicz & Wallman, 1959:3). Although only
related to three dimensions, Poincaré here provides us with an intuitive
approach to dimension, implicitly stressing the unbreakable correlation
between the law side and the factual side in the spatial aspect:

... if to divide a continuum it suffices to consider as cuts a certain
number of elements all distinguishable from one another, we say that
this continuum is of one dimension; if, on the contrary, to divide a
continuum it is necessary to consider as cuts a system of elements
themselves forming one or several continua, we shall say that this
continuum is of several dimensions (Hurewicz & Wallman, 1959:3).

Before 1911 the problem of dimension was confronted with two astonishing
discoveries. Cantor showed that the points of a line can be correlated one-to-
one with the points of a plane, and Peano mapped an interval continuously
on the whole of a square. The crucial question was whether, for example, the
points of a plane could be mapped onto the points of an interval in both a
continuous and one-to-one way. Such a mapping is called homeomorphic.
The impossibility to establish a homeomorphic mapping between a “m-
dimensional set and a (m+1)-dimensional set (h > 0)” was solved by Lüroth
for the case where m ≤ 3 (Brouwer, 1911:161; cf. also the footnote on page
161). Brouwer provided the first general proof of the invariance of the
number of a dimension (see Brouwer, 1911:161-165). Exploring suggestions
of Poincaré, Brouwer in 1913 introduced a precise (topologically invariant)
definition of dimension, which was independently recreated and improved in
1922 by Menger and Urysohn (cf. Hurewicz & Wallman, 1959:4). Menger’s
formulation (still adopted by Hurewicz and Wallman) simply reads:

a) the empty set has dimension -1,
b) the dimension of a space is the least integer n for which every point has
arbitrarily small neighborhoods whose boundaries have dimension less
than n (Hurewicz & Wallman, 1959:4, cf. p.24).

25
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25 See also Brouwer, 1924:554. When a “species” π does not contain a con-
tinuum as part it is of dimension 0 in the Menger-Urysohn sense.



Whereas a spatial subject is always factually extended in some dimension
(such as a 1-dimensional line, a 2-dimensional area, and so on), a spatial
object merely serves as a boundary (in a delimiting way). The boundaries
of a determined line-stretch are the two points delimiting it (with the line
as a one-dimensional spatial subject). But these boundary points
themselves are not extended in one dimension. Within one dimension
points are therefore not spatial subjects but merely spatial objects,
dependent upon the factual extension of the line. Yet a line may serve in a
similar delimiting way within two dimensions – for the lines delimiting an
area are not themselves extended in a two dimensional sense. In a similar
fashion a surface can assume the role of a spatial object, namely when it
delimits three dimensional spatial figures (such as a cube).

In general it can therefore be stated that whatever is a spatial subject in n
dimensions is a spatial object in n+1 dimensions. A point is a spatial
object in one dimension (an objective numerical analogy on the factual
side of the spatial aspect), and therefore a spatial subject in no dimension
(i.e., in zero dimensions). In terms of the fundamental difference between
a spatial subject and a spatial object, it is impossible to deduce spatial
extension from spatial objects (points).

26

We can now account for the three primitive terms in Hilbert’s
axiomatization of geometry in terms of the spatial subject-object relation.
The term ‘line’ reflects the primary existence of a (one dimensional)
spatial subject, the term ‘point’ highlights the primary existence of a (one
dimensional) spatial object and the phrase ‘lies on’ accounts for the
relation between a spatial subject and a spatial object – in other words, for
the spatial subject-object relation.
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26 It is therefore unjustifiable to see a line as a set of points. But it falls outside the scope
of this article to highlight the circularity present in Grünbaum's attempt to argue for a
consistent conception of the extended linear continuum as an aggregate of unextended
elements (see Grünbaum, 1952). Grünbaum did not realize that the actual infinite – or,
as one may prefer to call it: the at once infinite – depends upon a crucial spatial feature,
namely the order of simultaneity. In the idea of the at once infinite the meaning of
number analogically points towards the meaning of space.

Primitive features at the factual side Subject Object Relation
of the spatial aspect

The primitive terms in Hilbert’s
axiomatization of geometry (1899) Line Point Lies on



5. Concluding remark

Our analysis of the meaning of space in its coherence with number and of
the difference between numerical and spatial addition highlighted the
insight that the domains of number and space are distinct and that the
meaning of space depends upon the meaning of number. The
interconnections involved between these two aspects entail fundamental
philosophical problems which even caused diverging orientations within
mathematics as a discipline. Of course there are more interconnections
between number and space than those highlighted in this article. Without
entering in a detailed analysis a mere hint will be given of what these other
interconnections entail.

Given the foundational position of the numerical aspect in respect of the
spatial aspect one should also differentiate between analogies pointing
backward and forward between these two aspects. Distance, for example,
at the factual side of the spatial aspect points backwards to the numerical
mode. It may therefore be designated as a retrocipatory analogy within
space. The idea of the at once infinite (see note 25), furthermore,
represents an anticipatory analogy on the law side of the numerical aspect
pointing towards the order of simultaneity on the law side of the spatial
aspect. Likewise, the infinite divisibility of any (factually extended) spatial
subject refers back to the law side of the numerical aspect, where the order
of arithmetical succession reveals the primitive meaning of endlessness
(see note 17). In this context one should also mention that the continuous
extension of any spatial subject embodies the original meaning of the
spatial whole-parts relation (with its implied infinite divisibility). The
interval within the system of rational numbers analogically reflects this
infinite divisibility of a spatial subject,

27
and the latter, as we have just

pointed out, represents a retrocipation from space to the primitive meaning
of the successive infinite on the law side of the numerical aspect.

28
Only

when the anticipatory analogies within number are opened up and
explicitly explored (as it was done by Weierstrass, Cantor and Dedekind)
is it possible to arrive at a meaningful (spatially disclosed or anticipatory)
treatment of the real number system. Only then is it possible to explain
why the sub-discipline known as real analysis should therefore actually be
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27 The system of rational numbers therefore represents an anticipatory analogy
at the factual side of the numerical aspect to the factual whole-parts relation
within the spatial aspect.

28 The combined perspective thus obtained actually underlies the remark that
within the system of rational numbers we encounter an anticipation to a
retrocipation. The divisibility of an interval points forward to (anticipates)
the factual spatial whole-parts relation, whereas the latter (with its infinite
divisibility) points backward (retrocipates) to the order of succession on the
law side of the numerical aspect.



seen as a spatially disclosed numerical theory – and not merely as a purely
arithmetical theory. But a thorough analysis of all these additional
perspectives cannot be dealt with in this context.
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