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A Scoping Review of Culturally Sensitive Large Language 
Models-based Cognitive Behavioural Therapy for Anxiety and 

Depression: Global Lessons for African Implementation 
 

Abstract: Anxiety and depression are significant global men-
tal health challenges. In Africa, these conditions are critical so-
cial issues deeply connected to factors such as socio-economic 
disparities, cultural stigma, and limited healthcare resources. 
These factors create substantial barriers to effective care, high-
lighting the need for innovative approaches to mental health 
treatment. Large Language Model-based (LLM-based) Cogni-
tive Behavioural Therapy (CBT) addresses this need by lever-
aging CBT’s structured and effective interventions while al-
lowing for innovative approaches to scale the intervention for 
these conditions. However, existing research predominantly 
explores LLM integration in Western contexts, with minimal 
focus on African cultural dynamics. This scoping review in-
vestigates the integration of culturally sensitive elements in 
LLM-based CBT interventions for anxiety and depression, fo-
cusing on addressing the unique considerations for African 
implementation. Scopus, Web of Science (WOS), EBSCO, and 
Google Scholar were searched to identify studies published 
between 2019 and 2024. The review examines global practices 
of integrating cultural elements into LLM-based CBT and spe-
cific considerations for implementing these interventions in 

Africa. Findings reveal key challenges, including limited culturally representative datasets, diverse 
norms, traditional beliefs, and ethical concerns. Collaboration with African researchers and commu-
nities is crucial for addressing these gaps and ensuring culturally appropriate solutions. LLM-based 
CBT can address Africa’s mental health needs if culturally sensitive practices are prioritised. This re-
view offers guidance for ethical, accessible, and effective interventions, combining global best practices 
with local insights. 

 
1. Introduction    
Mental health disorders, particularly anxiety and depression, represent a significant global public 
health challenge, affecting over 280 million individuals worldwide (World Health Organization, 
2023). In Africa, these conditions are of pressing concern, with an estimated prevalence of depression 
ranging between 5% and 10%, surpassing the global average of 3.8% (World Health Organization, 
2023). This elevated burden is exacerbated by a severe shortage of mental health resources, with an 
85% gap in service accessibility (Sodi et al., 2024). This situation necessitates innovative approaches 
to mental health treatment that can effectively bridge this gap while respecting and incorporating 
cultural contexts. 

Among various treatment modalities for anxiety and depression (see Coplan et al., 2015), Cognitive 
Behavioural Therapy (CBT) is particularly well-suited for technological enhancement through Large 
Language Models (LLMs), as evidenced by Sham Sundhar et al. (2024). The effectiveness of CBT in 
treating anxiety and depression is well-documented across multiple contexts (Nozizwe, 2024; 
Twomey et al., 2015), including remote CBT (Ando et al., 2024). Hays (2009) noted, “Given CBT’s 
emphasis on scientific analysis and quantifiable outcomes, it is not surprising that CBT has also 
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become the most widely researched evidence-based psychotherapy” (p. 354). Its structured, step-by-
step approach, with clearly defined goals and outcomes at each stage, renders it especially amenable 
to LLM integration. The systematic nature of CBT, which encompasses specific phases such as 
assessment, cognitive restructuring, and behavioural activation, provides clear points for 
technological intervention while maintaining therapeutic integrity. 

Recent advances in LLMs, such as GPT-4 and Gemini, have demonstrated promising potential in 
enhancing the delivery of CBT (Obasa, 2024). The structured nature of CBT aligns well with LLMs’ 
capabilities to process and generate context-aware responses, making it an ideal candidate for 
technological augmentation (Sham Sundhar et al., 2024). This notion was further reinforced by Stade 
et al. (2024), who proposed various methods for integrating LLMs into behavioural healthcare. For 
instance, Stade et al. (2024) highlighted that a collaborative LLM can be utilised to deliver structured 
psychotherapeutic interventions. This alignment is particularly significant because: (i) CBT adheres 
to a systematic, evidence-based protocol that LLMs can effectively model; (ii) the therapy’s 
structured steps allow for clear integration points for technological support; (iii) CBT’s focus on 
identifiable thought patterns and behaviours corresponds well with LLM processing capabilities; 
and (iv) the therapy’s measurable outcomes facilitate effective evaluation of LLM integration (S. Lee 
et al., 2024; Sham Sundhar et al., 2024). 

Nevertheless, implementing LLM-based CBT interventions presents various challenges and 
concerns. These issues include ethical, privacy, and security considerations, which also pertain to 
LLMs and other AI tools in mental health practices (Baguma et al., 2023; De Choudhury et al., 2023). 
This review centres on the challenges of integrating cultural context, particularly in settings where 
indigenous knowledge systems play a vital role in understanding and treating mental health 
conditions. For example, LLM frameworks are trained using internet data, which may not adequately 
represent diverse knowledge systems and healing practices (Baguma et al., 2023). This limitation 
raises important questions regarding how to effectively incorporate indigenous knowledge and 
healing practices into LLM-based CBT to facilitate culturally sensitive interventions. 

1.1 Related reviews and knowledge gap 

Previous reviews have focused on a wide-ranging evaluation of LLMs in mental health care, 
exploring diverse applications, benefits, and challenges on a global scale (Guo et al., 2024; Hua et al., 
2024). For example, Guo et al. (2024) conducted a broad review of AI applications in mental 
healthcare, concentrating on general therapeutic applications without specific attention to CBT or 
cultural integration. Their key focus areas included LLM applications in early screening and digital 
interventions. The review concludes that while LLMs are effective in detecting mental health 
conditions and providing tailored interventions, ethical implications, biases, and the “black box” 
nature of LLMs require further attention. Hua et al. (2024) explored the technical aspects of LLMs in 
mental health support but did not address the integration of indigenous knowledge. While Phiri and 
Munoriyarwa (2023) examined AI applications in African mental health contexts, their review 
concentrated on general mental health technologies rather than specific therapeutic modalities. More 
specifically related to CBT, Jiang et al. (2024) provided an overview of AI integration into CBT 
practices; however, their review focused primarily on technological implementation without 
addressing cultural adaptation or context. Ahmed et al. (2023) examined conventional (e.g., rule-
based) chatbot features, not cultural integration in LLM-based CBT for anxiety and depression. 

The importance of culturally responsive CBT has been a topic of discussion for over a decade (Hays, 
2009; Hinton & Patel, 2017). Hays (2009) suggested ten ways to integrate diverse cultural 
considerations into CBT. These include emphasising (i) respectful behaviours that resonate with the 
client’s cultural norms, (ii) identifying and incorporating culturally related strengths and support, 
such as personal pride, spiritual beliefs, and community connections, and (iii) understanding the 
client’s experiences within systems of privilege and oppression. For example, the greeting “Hi” may 
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be considered disrespectful in some African and Asian countries but not in Western countries (Hays, 
2009). The discussion on culturally responsive CBT has continued among proponents of CBT (Huey 
Jr et al., 2023; Jalal et al., 2020), especially in Africa (Nozizwe, 2024). According to Nozizwe (2024), 
culturally adapted CBT interventions have been shown to improve anxiety symptoms and hold 
promise for scaling CBT interventions. Consequently, researchers are increasingly discussing the 
integration of cultural elements into LLMs for mental health practice (Aleem et al., 2024), including 
LLM-based CBT to produce responses that are domain-specific (Liu et al., 2023) and culturally 
resonant with the client. 

Although LLM-based CBT holds promise for delivering and scaling culturally adapted CBT 
interventions, their effectiveness, and that of LLMs in general, depends on how well they can 
integrate domain-specific knowledge (Ling et al., 2023). Generally, there are three primary 
approaches for knowledge integration in LLMs: finetuning, prompting, and Retrieval-Augmented 
Generation (RAG) (Patil & Gudivada, 2024). Each method offers distinct advantages and faces unique 
challenges, particularly when dealing with data constraints. Finetuning adapts pre-trained models 
to specific domains or tasks through additional training on specialised datasets (Anisuzzaman et al., 
2024, 2025). However, finetuning faces significant challenges when comprehensive training data are 
unavailable. For example, data scarcity can lead to overfitting, where the LLM overly emphasises a 
specific context (Raiaan et al., 2024). Domain-specific terminology and concepts may be inadequately 
captured, making quality control crucial with small datasets. Prompting (Shah et al., 2024) serves as 
an alternative to overcome data limitations. It requires no training data and allows real-time 
adaptation; however, it is less reliable than finetuning for complex tasks such as CBT, which require 
a personalised approach. Furthermore, results can be inconsistent across different prompts, as 
performance heavily depends on prompt engineering expertise (Zaghir et al., 2024). Retrieval-
augmented generation (RAG) offers a middle ground by dynamically incorporating external 
knowledge, thus reducing hallucination. Hallucination is the convincing presentation of false 
information as truth. RAG allows for regular knowledge updates without retraining and works well 
with limited domain-specific training data. However, the technical and resource requirements for 
implementing RAG can be challenging for low-income countries. 
Despite discussions on culturally responsive or adapted CBT over the past decade (Hays, 2009; 
Hinton & Patel, 2017; Huey Jr et al., 2023; Nozizwe, 2024) and various avenues for integrating 
domain-specific knowledge into LLMs, culturally responsive or adapted LLM-based CBT remains 
scarce and fragmented, necessitating synthesis. This scoping review addresses this critical gap in the 
existing literature by: 
• Focusing specifically on LLM integration within CBT frameworks 
• Synthesise literature on cultural adaptation approaches in LLM-based CBT delivery 
• Analysing global best practices for potential African implementation 

1.2 Purpose and research questions 
This scoping review aims to systematically map and analyse the existing evidence concerning the 
integration of culturally sensitive contexts in LLM-based cognitive-behavioural therapy (CBT) for 
anxiety and depression. Our investigation addresses four key research questions: How are LLMs being 
integrated with cultural elements in CBT interventions globally? What methods are employed to ensure 
cultural sensitivity in LLM-based CBT for anxiety and depression? What specific considerations must be 
addressed when implementing culturally sensitive LLM-based CBT in Africa? What infrastructure and 
support systems are needed to facilitate the successful implementation of LLM-based CBT in African settings? 
To answer these questions, we pursue three primary objectives: 

• Map the current evidence on LLM-based CBT for anxiety and depression globally. 
• Identify and analyse successful strategies for cultural integration in LLM-based CBT 

interventions. 
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• Synthesise recommendations for implementing culturally appropriate LLM-based CBT in 
Africa. 

Through this scoping review, we examined global experiences and their implications for 
implementation in Africa. Our aim is to contribute to the development of culturally appropriate and 
effective LLM-based CBT interventions to address the significant mental health challenges in Africa. 

2. Methodology 
This scoping review adhered to the minimum requirements outlined in the Preferred Reporting 
Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews (PRISMA-ScR) 
(Tricco et al., 2018). The process is illustrated in Figure 1 and described in detail in the following 
subsections. 

A comprehensive literature search was conducted on July 21, 2024, across the following databases: 
Scopus, Web of Science (WOS), EBSCO, and Google Scholar (for grey literature). The search strategy 
utilised Boolean operators to combine terms related to both the target mental health conditions and 
large language models (LLMs) in the context of cognitive behavioural therapy (CBT). The search 
terms included combinations of the following keywords to refine the search for relevant studies: 
(“depressed” OR “depression” OR “anxiety”) AND (“large language model*” OR “LLMs” OR 
“GPT*” OR “ChatGPT” OR “BERT” OR “Transformer” OR “LaMDA” OR “PaLM” OR “Claude” OR 
“Gemini” OR “BLOOM” OR “LLaMA”) AND (“Cognitive Behavioural Therapy” OR “CBT”). 
Although this review focuses on cultural integration, we employed broader search terms that did not 
include “Culture” and “Africa” for two reasons: (i) some studies did not explicitly mention cultural 
context and (ii) to avoid restricting the results to Africa or omitting papers that mentioned a specific 
country in Africa without explicitly mentioning Africa. The process is illustrated in Figure 1 and 
described in detail in the following subsections. 

2.1 Inclusion and exclusion criteria 

The inclusion criteria for the studies are as follows: (i) they must be published in peer-reviewed 
journals, conference proceedings, or preprint platforms between 2019 and July 2024, and (ii) they 
must investigate the use of LLM-based CBT interventions specifically targeting anxiety and/or 
depression. We selected literature from 2019 onwards because Bidirectional Encoder Representations 
from Transformers (BERT), the foundational language representation model for LLMs, was 
introduced in 2018 (Devlin, 2018) and gained popularity in 2019 (Kenton & Toutanova, 2019). A 
broad spectrum of study designs was considered, including randomised controlled trials, 
observational studies, and qualitative research. Studies were excluded if they were review articles, 
did not primarily focus on anxiety or depression, or examined interventions unrelated to LLMs or 
CBT. Additionally, studies addressing mental health disorders outside of anxiety and depression 
were also excluded. 

2.2 Study selection 
The initial database search yielded a total of 106 studies, distributed as follows: 4 from WOS, 15 from 
Scopus, 57 from EBSCO (which includes databases listed in Table 1), and 30 from Google Scholar 
(from an initial search hit of 119). As shown in Figure 1, duplicates (n = 32) were removed from 
EBSCO, and an additional (n = 5) duplicates were identified and excluded after all identified studies 
were combined in the EndNote reference management software. The studies were then exported to 
Rayyan (Ouzzani et al., 2016), where the first author, with the assistance of a librarian, conducted the 
screening of titles and abstracts according to the established inclusion and exclusion criteria. The 
screening was independently validated by the second author. Full-text articles (n = 62) were retrieved 
for studies that met the criteria or where eligibility was unclear. Disagreements between the 
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reviewers were resolved through discussion and consensus. Ultimately, 31 studies were included in 
the review. 

Figure 1: PRISMA flow diagram 
 

Table 1: Databases hosted by EBSCO, where records were found (with duplicates) 
Databases Number of Records 

MEDLINE n = 14 
APA PsycInfo n = 13 
Academic Search Ultimate n = 12 

Additional duplicate records removed 

(n = 5) 

Records identified from: 

Databases (n = 106): 

• WOS (n = 4) 
• SCOPUS (n = 15) 
• EBSCO (n = 57) 
• Google Scholar (n = 30) 

Duplicate records removed before 
screening: 

From EBSCO (n = 32). 

Identification of studies via databases  
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Records screened 

 (n = 69) 

Reports sought for retrieval  

(n = 62) 

Full-text version not available 

(n = 0) 

Reports assessed for eligibility 

(n = 62) 

Reports excluded 

Reports did not meet the inclusion criteria 
after reading the full text. 

(n = 31) 

Studies included in review 

(n = 31) 

Records Exported to EndNote 

(n = 74) 

Records excluded because the title and 
abstract did not meet the inclusion criteria 

(n = 7) 
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E-Journals n = 4 
Family & Society Studies Worldwide n = 3 
Inspec n = 3 
Health Source: Nursing/Academic Edition n = 2 
APA PsycArticles n = 1 
CINAHL with Full Text n = 1 
MasterFILE Premier n = 1 
OpenDissertations n = 1 
Sociology Source Ultimate n =1 
Women's Studies International n =1 
  n =57 

2.3 Data extraction, synthesis and analysis 

Data were extracted from each included study based on the following key areas: Study 
Characteristics (author(s), year of publication, country/region, and study design), Study Target 
(mental health conditions addressed, such as anxiety and depression), and Integration of Culturally 
Sensitive LLMs-based CBT (how LLMs were integrated into CBT interventions to enhance cultural 
sensitivity). Due to the heterogeneity of study designs, interventions, and reported outcomes, a 
narrative synthesis approach (Snilstveit et al., 2012) was adopted to summarise the findings. The 
synthesis focused on identifying key methods, application stages, and challenges associated with the 
use of culturally sensitive LLMs in CBT interventions for anxiety and depression. 

As this study involved the review of existing literature, formal ethical approval was not required. 
The review was conducted in accordance with ethical research practices, ensuring the accurate 
representation of original study findings and appropriate citation of all sources. 

3. Presentation of Results 
This scoping review provides an understanding of how countries and geographical regions are 
involved in studies integrating LLMs into CBT for anxiety and depression. It addresses key research 
questions, including how LLMs are integrated or used to incorporate indigenous knowledge, and 
highlights the stages in the CBT process where LLMs are applied. 

3.1 Region, country and study type  

The studies reviewed were conducted in a diverse range of countries, reflecting a global interest in 
exploring the role of LLMs in CBT. We identified the country of study based on the authors' 
affiliations. According to the available literature, the United States (USA) led with the highest 
number of studies (9), as shown in Figure 2, followed by China with 7. India and South Korea each 
contributed four studies, demonstrating significant research engagement in these regions. 
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Australia, France, the United Kingdom (UK), and Hong Kong each accounted for two studies, 
highlighting a growing interest in these countries. Other nations, such as Finland, Sweden, Saudi 
Arabia, Italy, Japan, Taiwan, the Czech Republic, and Singapore, each contributed one study, 
signalling emerging research efforts in LLM-based CBT interventions. One study was categorised 
under “Unknown,” indicating that the country affiliation of the authors or the study's location could 
not be identified. 

Figure 2 shows that while the USA and China are at the forefront of research in this domain, there is 
also a notable presence from countries across Asia, Europe, and other regions (see Figure 3). 
However, some regions, particularly Africa, were not represented in the reviewed studies, indicating 
a gap in the research landscape. This highlights opportunities for expanding the scope of research, 
fostering global collaboration, and ensuring that LLM-based CBT interventions are explored more 
broadly, especially in underrepresented areas. 

3.2 Strategies for cultural integration in LLM-based CBT interventions 

3.2.1 Key Methods of integrating cultural content in LLM-based CBT for Anxiety and Depression  

The methods of integrating specific context or cultural content into LLMs for CBT have been 
approached in several ways, as shown in Table 2. These methods, which aim to enhance the 
therapeutic effectiveness of LLMs, include the use of curated datasets that reflect different cultural 
perspectives (Na, 2024; Schiff, 2024); fine-tuning models based on user-specific contexts and/or 
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Figure 2: Countries where studies were conducted 
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Figure 3: Regions where studies were conducted 
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cultural identities (Abubakar et al., 2024; Adhikary et al., 2024; Agrawal & Gupta, 2024; Izumi et al., 
2024; S. Lee et al., 2024; Na, 2024; Nie et al., 2024; Zhang et al., 2024); and incorporating feedback 
mechanisms that allow for continuous adjustment of responses (Abubakar et al., 2024). Additionally, 
some research (Gabriel et al., 2024; Izumi et al., 2024; Na, 2024) has focused on training LLMs to 
recognise specific cognitive distortions and adapt therapeutic techniques like Socratic questioning to 
align with cultural norms. We discuss the details of each method in the following subsections. 
However, it is noteworthy that two or more of these methods can be combined to improve the 
effectiveness of the intervention, as seen in Na (2024). 
Table 2: Summarised methods implemented in various papers for the use/integration of LLMs in CBT 

Key methods used for the 
effectiveness of LLM-
Based CBT 

A brief explanation of 
the category 

Example of Studies 

Inclusion of Cultural 
Sensitivity Training Data 

Curated datasets that 
encompass a wide 
range of cultural 
contexts 

(Na, 2024); (Schiff, 2024) 

Contextual Fine-Tuning Using data specific to 
a targeted therapeutic 
context 

 (Abubakar et al., 2024); (Adhikary et al., 2024); 
(Agrawal & Gupta, 2024); (Izumi et al., 2024); (S. 
Lee et al., 2024); (Na, 2024); (Nie et al., 2024); 
(Zhang et al., 2024)  

Feedback and adjustment 
mechanisms 

Allow users to report 
responses they find 
culturally insensitive 

(Abubakar et al., 2024); 
External: (Chiu et al., 2024); (Kian et al., 2024); (Y. 
K. Lee et al., 2024); (Zhang et al., 2024) 

Handling specific cultural 
or contextual cognitive 
distortions 

Questioning 
techniques to reflect 
individual beliefs 

(Gabriel et al., 2024);  (Na, 2024); (Izumi et al., 
2024)  

• Inclusion of Cultural Sensitivity Training Data: Research in this category trained LLMs on 
extensive, curated datasets that encompassed a wide range of cultural contexts, including mental 
health perspectives and cognitive distortions unique to specific cultures. This method involved 
generating a dataset that is semantically equivalent to a Western-dominated training dataset, 
aiming to reduce bias that could arise from such datasets used to train the foundation model. For 
instance, Na (2024) addressed the challenges of cultural sensitivity and data quality in mental 
health interventions by utilising the PsyQA dataset (Sun et al., 2021), which is specifically 
designed for Chinese mental health question-answering tasks. Na (2024) employed prompts 
grounded in CBT principles to ensure that the dataset follows structured, professional 
therapeutic strategies. The author instructed ChatGPT to generate responses incorporating CBT 
components for each question and description in the PsyQA dataset. 

• Contextual Fine-Tuning: This involves fine-tuning a large language model (LLM) using a dataset 
crafted by an expert, such as a counselling psychologist, to guide the LLM's responses in a 
targeted context. This method enables LLMs to dynamically adjust their responses based on user 
input while maintaining a specific context. For example, Schiff (2024) fine-tuned Meta’s LLaMA-
3 8B model using scenarios generated by the AI assistant Claude. The goal was to address specific 
cognitive distortions, such as all-or-nothing thinking and overgeneralisation. Similarly, Agrawal 
and Gupta (2024) fine-tuned the GPT, LLaMA, and Gemini models using few-shot prompting 
based on criteria specified in the Diagnostic and Statistical Manual of Mental Disorders, Fifth 
Edition (DSM-5), to diagnose depression and deliver CBT-based therapeutic interventions. Their 
approach ensured empathetic, contextually relevant interactions. Both studies demonstrated 
how fine-tuning can improve the models’ ability to detect, diagnose, and treat various cognitive 
and emotional disorders using CBT methods. 
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• Feedback and adjustment mechanisms: These mechanisms allow users to report responses they 
find culturally insensitive. Learning algorithms are implemented that adjust future responses 
based on this feedback. For example, Abubakar et al. (2024) applied a three-stage method for 
developing a mental health therapy chatbot using Reinforcement Learning from Human 
Feedback (RLHF) to optimise chatbot responses. The process begins with supervised fine-tuning 
of an LLaMa model to generate appropriate responses, followed by training a reward model to 
evaluate response quality. The final stage employs reinforcement learning techniques to optimise 
the model while maintaining consistency with its initial training. The model was trained using a 
dataset of counsellor-client messages from the SNAP Counselling Conversation Analysis dataset 
(Althoff et al., 2016), covering various mental health issues, including depression and anxiety. 
Thus, Abubakar et al. (2024) combined both automated learning and human feedback to create 
a chatbot capable of providing contextually appropriate therapeutic responses. The method 
emphasises maintaining high-quality interactions while allowing for continuous improvement 
based on human feedback. Others collect feedback from users via questionnaires or surveys to 
improve LLMs for future use. 

• Socratic question generation and adaptation. This method involves adapting the LLM’s 
questioning techniques to reflect individual beliefs. For example, Izumi et al. (2024) examined 
the integration of Socratic questioning techniques with LLMs in CBT dialogue scenarios. The 
researchers implemented three distinct approaches: traditional Socratic questioning, pure LLM-
generated responses (using either OsakaED or GPT-4), and a hybrid combining both methods. 
The Socratic dialogue was designed to help clients objectively examine and reconsider their 
automatic thoughts. The traditional Socratic questions followed a structured progression, 
prompting clients to evaluate the evidence for and against their automatic thoughts. This 
approach allows them to consider alternative perspectives and assess the worst, best, and most 
realistic outcomes. 

3.3 Categorisation of methods of usage vs integration of LLM for CBT 

Understanding the distinction between LLM usage and integration in CBT is crucial for maximising 
its effectiveness. While usage typically involves employing LLMs as support tools for tasks like 
session summaries and question generation, integration involves the incorporation of LLMs into the 
therapeutic process itself. Integration positions LLMs as active participants in the CBT journey, 
contributing to real-time cognitive distortion identification, reframing exercises, and guided 
discovery processes. Thus, integration enables dynamic therapeutic adjustments based on patient 
responses. Although usage and integration are similar concepts, the key difference between the two 
lies in the depth of involvement. Integration requires modification of the LLM, while LLMs may be 
used without modifying the pre-trained model. For example, Jiang et al. (2024) used GPT-4 to 
summarise posts and identify cognitive distortions, while Xiao et al. (2024) utilised the “HealMe” 
model to assist in cognitive reframing. Abubakar et al. (2024) integrated RLHF into a chatbot to 
optimise real-time therapy sessions. Similarly, Kian et al. (2024) combined an LLM with a socially 
assistive robot to guide patients through CBT exercises, providing real-time interaction and feedback. 

3.4 Stages of CBT and LLM usage or integration 

Cognitive Behavioural Therapy (CBT) typically follows a structured framework comprising several 
key stages: Assessment, Identification of Cognitive Distortions, Cognitive Restructuring, 
Behavioural Activation, and Maintenance and Relapse Prevention. Each stage targets specific 
therapeutic objectives, and recent studies have explored how Large Language Models (LLMs) can be 
integrated into these stages to enhance therapeutic processes. 

During the Assessment stage, therapists aim to develop an initial understanding of a patient’s 
emotional and mental state. Studies such as Adhikary et al. (2024) have demonstrated the use of 
LLMs—specifically Mental Llama and Mistral—for summarising therapy sessions. These models 
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support therapists by rapidly synthesising key information from session transcripts, thereby 
assisting in the early identification of cognitive distortions. In the Identification of Cognitive 
Distortions stage, LLMs play a crucial role by detecting unhelpful or irrational thought patterns 
embedded in clients’ narratives. Research by Jiang et al. (2024) and Schiff (2024) employed models 
like GPT-4 and CBTLlama to extract cognitive distortions from textual data, providing a valuable 
diagnostic tool to inform subsequent interventions. 

The Cognitive Restructuring stage involves helping clients to reframe and challenge distorted 
thinking. Xiao et al. (2024) and Izumi et al. (2024) illustrated how LLMs could effectively guide clients 
through this process by delivering empathetic and logic-driven responses. These models also utilise 
Socratic questioning techniques to prompt clients to critically examine and re-evaluate maladaptive 
thoughts. In the Behavioural Activation phase, clients are encouraged to engage in positive, goal-
directed activities to counter symptoms of anxiety and depression. Kian et al. (2024) integrated LLMs 
into a Socially Assistive Robot to facilitate CBT exercises. This approach successfully promoted 
behavioural engagement and yielded measurable improvements in psychological distress. Finally, 
in the Maintenance and Relapse Prevention stage, LLMs offer tools for sustained therapeutic support. 
Nie et al. (2024) developed CaiTI, a Conversational AI Therapist, which employs LLMs to monitor 
clients’ daily functioning and deliver personalised interventions. This ongoing support plays a 
critical role in maintaining therapeutic gains and preventing relapse post-treatment. 

4. Discussion 
One critical gap identified in the literature is the underrepresentation of African literature in LLM-
based CBT. Current implementations predominantly focus on Western and Chinese contexts, with 
no integration of culturally specific African contexts into LLM-based CBT. However, this review 
presents an opportunity to learn from global practices and address this gap. The review highlighted 
four primary methods for incorporating cultural context into LLM-based CBT.: (i) curating culturally 
contextualised datasets from existing datasets to achieve semantic equivalence but syntactic 
variation; (ii) utilising expert-generated data grounded in indigenous knowledge and contextual 
applications of CBT within specific settings; (iii) employing adaptive techniques such as RLHF to 
enable LLMs to learn and adapt to users’ contexts and belief systems; and (iv) prompting LLMs to 
specialise in particular aspects of CBT, such as Socratic questioning or specific stages within the 
therapeutic process. We present some challenges and suggestions to facilitate African 
implementation. 

4.1 Recommendations for implementing culturally appropriate LLM-based CBT  

Implementing large language model-based cognitive behavioural therapy (LLM-based CBT) in the 
African context presents several culturally specific challenges that demand nuanced, context-aware 
solutions. The African continent is marked by strong traditional and spiritual beliefs about mental 
health, collective social structures that shape therapy engagement, limited technological 
infrastructure in many areas, diverse linguistic and cultural realities, and socio-economic conditions 
that influence how therapy is received and practised. These factors necessitate a multi-integrative 
approach to LLM implementation—particularly important given the scarcity of culturally 
appropriate training datasets. 

A primary challenge is the limited availability of culturally sensitive training data. As Baguma et al. 
(2023) note, African languages and cultural expressions are predominantly oral, leaving them 
underrepresented in digital formats and, consequently, in the datasets used to train LLMs. To 
address this, African researchers must focus on contextual fine-tuning and the incorporation of 
feedback mechanisms that can embed traditional and spiritual belief systems into therapeutic 
content. Collective social structures also play a central role in therapy outcomes. Research by Jameel 
et al. (2022) and Kunorubwe (2023) shows that individuals from collectivist cultures often value 
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family involvement in therapy decisions, requiring LLMs to be culturally attuned to these dynamics. 
To support this, there is a need for curated datasets that reflect African communal structures, 
alongside a call for bibliometric mapping to foster collaboration among African scholars working at 
the intersection of mental health and AI. 

Another major hurdle is the problem of hallucinations—instances where LLMs, such as GPT-4, 
generate factually incorrect or misleading information. Jiang et al. (2024) emphasise the risks 
associated with hallucinations in therapeutic contexts, where factual accuracy and emotional 
reliability are paramount. This underscores the critical need for continual model refinement and 
oversight. Despite advances in fine-tuning LLMs for therapeutic use, human validation remains 
indispensable. Schiff (2024) argues that responses generated by LLMs must be reviewed by qualified 
therapists to ensure they adhere to professional clinical standards and maintain therapeutic integrity. 
Without this validation, there is a risk of divergence from evidence-based CBT practices. 

One strategic pathway forward is to develop an African-informed framework for LLM-based CBT 
grounded in local cultural norms and values. While a standardised framework is yet to be developed, 
the concept of culturally grounded and culturally adapted interventions offers a valuable 
foundation. Culturally grounded approaches align interventions with a client’s worldview and belief 
systems (Anakwenze, 2022; Caloudas et al., 2024), while culturally adapted approaches involve 
active collaboration with community leaders to ensure interventions are socially resonant and 
contextually valid (Anakwenze, 2022; Spanhel et al., 2021). These approaches can be operationalised 
in LLMs through combined methods such as prompting, fine-tuning, and iterative validation 
involving local communities. 

Ethical concerns must also be addressed to ensure the safe and just application of LLM-based CBT. 
Studies such as Gabriel et al. (2024) reveal that LLMs may exhibit uneven empathy responses across 
demographic groups, raising questions about fairness and bias. This is particularly dangerous in 
high-stakes situations, such as suicidal ideation, where safety and trust are paramount. Manvi et al. 
(2024) warn that without representative training data, LLMs risk reinforcing existing stereotypes and 
disseminating culturally inaccurate or harmful information. These issues point to the broader ethical 
imperative of promoting fairness, respect, and equity in AI-based mental health interventions. 

Thus, the African implementation of LLM-based CBT requires more than just technological 
adaptation; it demands cultural legitimacy, ethical reflexivity, and collaborative innovation. 
Solutions lie in expanding culturally sensitive data sources, reducing model hallucinations, 
embedding human oversight, and rooting interventions in community-based cultural validation. 
Doing so will not only enhance therapeutic relevance but also help counter the embedded 
inequalities within global AI systems. 

5. Conclusion  
LLM-based CBT holds promise for the effectiveness and support of CBT within the African context 
due to LLMs’ ability to understand, process, and generate large volumes of text. Many regions have 
begun exploring this potential. Despite the promise and fast-evolving implementation in other areas, 
adoption within African contexts remains scarce. We identify dataset challenges, diverse African 
cultures and norms, traditional and spiritual beliefs, and ethical concerns, among others, as key 
factors that must be addressed to promote implementation in Africa. We recommend bibliometric 
analysis as future work to identify African researchers in this niche area, which would facilitate 
collaboration among these researchers and is necessary for competing globally. 
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